Context 00	Studied architectures	Experiments 000000	Conclusion O	References

Recurrence-free unconstrained handwritten text recognition using gated fully convolutional network

Denis Coquenet ^{1,3}, Clément Chatelain ², Thierry Paquet ³

LITIS

¹Normandie Université, Normandie, France ²INSA de Rouen, Normandie, France

³Université de Rouen, Normandie, France

SIFED, 6th July 2020

Context ●0	Studied architectures	Experiments 000000	Conclusion 0	References

Deep learning handwriting recognition system

Constraints

- Images (input) of variable size
- Sequence of characters (output) of variable length

Sequence alignment

Connectionist Temporal Classification (CTC) [Graves2006]

Context ○●	Studied architectures	Experiments 000000	Conclusion O	References

State of the art

Recurrent models (recurrent layers)

- Multi-Dimensional Long-Short Term Memory (MDLSTM) [Pham2014; Voigtlaender2016]
- Convolutional Neural Network + Bidirectional Long-Short Term Memory (CNN+BLSTM) [Puigcerver2017]

Non-recurrent models

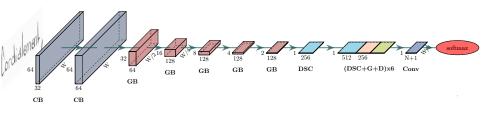
- Convolutional Neural Networks (CNN) [Ptucha2018]
- Gated Fully Convolutional Network (GFCN) [Yousef2018; Ingle2019]

Attention models (recurrent process)

• Encoder-decoder architecture with soft attention [Chowdhury2018; Michael2019]

Context 00	Studied architectures ●○○	Experiments	Conclusion	References

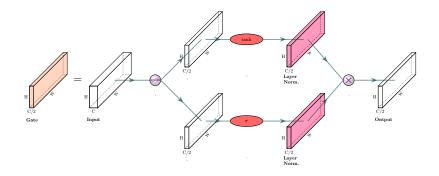
Our GFCN model



- G (Gate)
- DSC (Depthwise Separable Convolution)
- CB (Convolution Block) = Conv + Conv + Instance Norm. + Dropout
- GB (Gate Block) = DSC + DSC + Instance Norm. (+ MaxPooling) + Gate + Dropout
- (H, W, C) = (Height, Width, Feature maps)
- N = charset size (+ 1 for the CTC blank)

Context	Studied architectures	Experiments	Conclusion	References
00	○●○	000000	O	

Gate



Context	Studied architectures	Experiments	Conclusion	References
00	00●	000000	o	

Details

Architecture

- Deep: 22 convolutional layers
- Parameters: 1.4 M
- Receptive field: (196, 240)
- Input: Fixed-height image (64px) preserving the original width

Hyperparameters

- Framework: Pytorch
- Optimizer: Adam(0.0001)
- Ioss: CTC

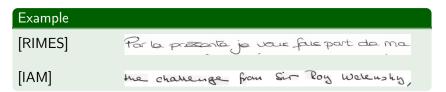
Context 00	Studied architectures	Experiments ●00000	Conclusion o	References

Datasets

• grayscaled line text images (300dpi)

Dataset characteristics

Dataset	Training	Validation	Test	Alphabet	Language
RIMES	9,947	1,333	778	100	French
IAM	6,482	976	2,915	79	English



Context 00	Studied architectures	Experiments 0●0000	Conclusion o	References

Normalization techniques - visualisation

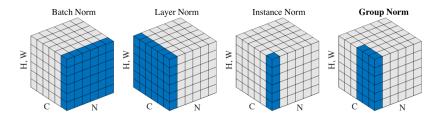


Image from [Wu2018]

- N: Mini-batch size
- H: Height
- W: Width
- C: Feature maps

Context 00	Studied architectures	Experiments 00●000	Conclusion o	References

Normalization techniques - results

Normalization	CER (%)	CER (%)	CER (%)	CER (%)	Time
Normalization	50 epochs	100 epochs	150 epochs	200 epochs	(/epoch)
Instance	6.87	5.03	4.47	4.28	8.5 min
Layer	6.75	5.04	4.47	4.28	15 min
Group (32)	7.10	5.30	4.86	4.32	8.75 min
Batch	9.6	5.7	5.4	4.8	8.5 min

Table: Effect of type of normalization for our GFCN with the RIMES dataset (for a mini-batch size of 2). CER is computed on the valid set.

Context 00	Studied architectures	Experiments 000●00	Conclusion O	References

Impact of ending blocks

Number of ending blocks (DSC+G+D)	CER (%) 100 epochs	CER (%) 200 epochs	Parameters	Receptive Field (h, w)
6 (baseline)	6.82	5.80	1,375,792	(196, 240)
5	6.69	5.97	1,241,904	(196, 212)
4	8.14	7.48	1,108,016	(196, 184)
3	6.93	6.23	974,128	(196, 156)
2	7.35	6.63	840,240	(196, 128)
1	8.30	7.83	706,352	(196, 100)

Table: Impact of the receptive field on the IAM dataset. CER is computed over the valid set.

Context 00	Studied architectures	Experiments 0000●0	Conclusion o	References

IAM

Architecture	CER (%) validation	WER (%) validation	CER (%) test	WER (%) test	Parameters
2D-LSTM [Moysset2019]	5.41	20.15	8.88	29.15	0.8 M
2D-LSTM-X2 [Moysset2019]	5.40	20.40	8.86	29.31	3.3 M
CNN + 1D-LSTM [Puigcerver2017]	5.1		8.2		9.6 M
CNN + 1D-LSTM [Moysset2019]	4.62	17.31	7.73	25.22	9.6 M
Ours	5.23	21.12	7.99	28.61	1.4 M

Table: Comparative results on the IAM dataset without LM, lexicon nor data augmentation.

Context 00	Studied architectures	Experiments 00000●	Conclusion o	References

RIMES

Architecture	CER (%) validation	WER (%) validation	CER (%) test	WER (%)	Parameters
2D-LSTM [Moysset2019]	3.32	13.24	4.94	16.03	0.8 M
2D-LSTM-X2 [Moysset2019]	3.14	12.48	4.80	16.42	3.3 M
CNN + 1D-LSTM [Moysset2019]	2.9	11.68	4.39	14.05	9.6 M
CNN + 1D-LSTM [Puigcerver2017]	3.0		3.3		9.6 M
Ours	3.82	15.60	4.35	18.01	1.4 M

Table: Comparative results on the RIMES dataset without LM, lexicon, nor data augmentation.

Context	Studied architectures	Experiments	Conclusion	References
			•	

Conclusion

Our model

- A recurrent-less fully convolutional network
- Deep, with a large receptive field
- Competitive results on both RIMES and IAM datasets

Future works

Improving the performances

Implement a data augmentation strategy

Toward paragraph-level text recognition

• Seq2Seq model with attention [Bluche2016; Bluche2017]

Context 00	Studied architectures	Experiments 000000	Conclusion O	References
References	;			
[IAM]	database for	al. "The IAM-database: offline handwriting reco 9–46. DOI: 10.1007/s1	ognition". In: IJDAR	
[Graves200	unsegmented	al. "Connectionist tem I sequence data with re 2006. Jan. 2006, pp. 36	current neural netwo	0
[RIMES]	Handwriting	Grosicki and Haikal El / Recognition Competitio 53. DOI: 10.1109/ICDA	on". In: Sept. 2011,	-French
[Pham2014	·	al. "Dropout Improves I ing Recognition". In: <i>IC</i>		etworks
[Voigtlaend	Multidimensi	et al. "Handwriting Re onal Long Short-Term n: <i>ICFHR</i> . 2016, pp. 22	Memory Recurrent	
[Bluche201		uche. Joint Line Segme Handwritten Paragraph		•

Context 00	Studied architectures	Experiments 000000	Conclusion 0	References
References	s II			
[Bluche20]	Read: End-to- MDLSTM Att Conference on	Louradour, and R. Me End Handwritten Para tention". In: 2017 14th Document Analysis a pp. 1050–1055.	agraph Recognition v IAPR International	with
[Puigcerve	1	"Are Multidimensiona Handwritten Text Rec	2	5
[Chowdhur		t al. An Efficient End-a Text Recognition. 2018		el for
[Yousef201		al. Accurate, Data-Effi vith Convolutional Neu		d Text
[Ptucha20]	using Fully Co	ki Such et al. "Intellige privolutional Neural Ne 8 (Dec. 2018).	0	
[Wu2018]	Yuxin Wu and 1803.08494 [Kaiming He. <i>Group I</i> cs.CV].	Vormalization. 2018.	arXiv:

Context 00	Studied architectures	Experiments 000000	Conclusion O	References
Reference	s III			

[Ingle2019]	R. Ingle et al. A Scalable Handwritten Text Recognition System. 2019. arXiv: 1904.09150.
[Michael2019]	Johannes Michael et al. Evaluating Sequence-to-Sequence Models for Handwritten Text Recognition. 2019. eprint: 1903.07377.
[Moysset2019]	B. Moysset and R. Messina. "Are 2D-LSTM really dead for offline text recognition?" In: <i>IJDAR</i> 22 (June 2019), pp. 1–16. DOI: 10.1007/s10032-019-00325-0.

Standard Convolution

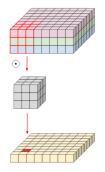
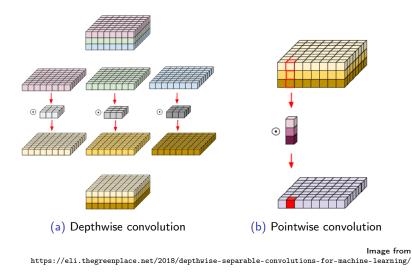


Image from https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

•000

Depthwise Separable Convolution



First, merge repeat characters.

Then, remove any ϵ tokens.

The remaining characters are the output.

Image from https://distill.pub/2017/ctc/

Evolution since last year

	GCNN (2019)	GFCN (2020)
RIMES Valid CER	9.92 %	3.82 %
RIMES Test CER	10.03 %	4.35 %
Convolutional layers	21	22
Parameters	6.9 M	1.4 M
Normalization	×	Instance
Framework	Keras	Pytorch
Input image height	32px	64px
Keep ratio	\checkmark	×
Data Augmentation	\checkmark	×
Depthwise Separable Convolution	\checkmark	\checkmark
Residual connection	\checkmark	×
Shared-weight layers	\checkmark	×
Fully-connected layers	\checkmark	×
Sliding window process	✓	×