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Text line segmentation

I Goal: detect the text lines of an image;

I Application: apply a text recognition
system on the detected text lines.
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State-of-the-art

I dhSegment [Oliveira2018]:
CNN + Resnet-50 pre-trained on ImageNet;
Multi-task: text line detection, ornament detection...;
Good results on various datasets: DIVA, cBAD...

I Yang et al. [Yang2017]:
Multimodal FCN + use of the text content;
Good results on modern documents: DSSE, SectLabel...

I Moysset et al. [Moysset2015]:
Recurrent network;
Text line segmentation of paragraphs;
2 labels: line and interline.
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Problems of dhSegment

I Needs a lot of annotated data;
I Good results but can still be improved;
I Too long to analyse a whole corpus:
∼66 days for 2M images (Balsac dataset).

Is pre-training on natural scene images the most suitable for
working on document images ?
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Main goal

Analyse the impact of a pre-training step on the line
segmentation task.

We want to develop a model:
I Containing no pre-trained part learnt on natural scene images;
I Having less parameters than dhSegment and a reduced prediction

time;
I Yielding higher accuracy than dhSegment.
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Yang’s architecture [Yang2017]
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Architecture of our model
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Implementation details

I Input image size: 384x384 px ;
I Batch normalization + dropout layers after all convolutions;
I Use of concatenations to help the detection of small objects;
I Post-processing: thresholding + removal of small connected

components.
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Datasets

Balsac:
913 annotated images

Horae [Boillet2019]:
557 annotated images
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Datasets II

READ-BAD [Grüning2017]:
2036 annotated images

DIVA-HisDB [Simistira2016]:
120 annotated images
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Comparison with dhSegment
Dataset Model IoU Pr Rec F1 Time1

Balsac dhSegment 73.78 92.07 78.76 84.81 66.3
Our 83.79 94.80 87.86 91.11 9.2

Horae dhSegment 65.22 71.70 89.29 82.32 18.8
Our 63.95 78.38 80.45 84.93 2.3

READ-Simple dhSegment 64.55 85.04 71.85 77.25 8.42

Our 64.03 81.76 75.60 76.66 1.02

READ-Complex dhSegment 52.91 79.28 59.16 69.27 10.62

Our 54.40 83.62 61.97 73.16 1.32

DIVA-HisDB dhSegment 74.24 92.41 79.10 85.19 NA
Our 75.71 92.14 80.88 86.09 NA

dhSegment Our
Number of 32.8M(9.36M) 4.1M
parameters

1Prediction time (GPU GeForce RTX 2070 8G) in days to analyse the whole corpus.
2Estimation based on the manuscripts sizes without BHIC and Unibas.
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Multiple document dataset

Does pre-training on document images improve the
performances ?

Training Validation Test
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Comparison with dhSegment

Data Model IoU Pr Rec F1

Balsac

dhSegment 73.78 92.07 78.76 84.81
dhSegment PT 74.02 91.89 79.09 84.95
Our 83.79 94.80 87.86 91.11
Our PT 84.87 94.25 89.49 91.75

Horae

dhSegment 65.22 71.70 89.29 82.32
dhSegment PT 60.69 80.94 73.65 81.99
Our 63.95 78.38 80.45 84.93
Our PT 68.81 80.31 84.80 88.62

READ-Simple

dhSegment 64.55 85.04 71.85 77.25
dhSegment PT 65.07 88.34 71.56 80.72
Our 64.03 81.76 75.60 76.66
Our PT 68.14 83.19 78.05 79.45

READ-Complex

dhSegment 52.91 79.28 59.16 69.27
dhSegment PT 53.34 85.51 57.80 68.47
U-FCN 54.40 83.62 61.97 73.16
U-FCN PT 60.28 81.03 68.17 78.30

DIVA-HisDB

dhSegment 74.24 92.41 79.10 85.19
dhSegment PT 73.00 91.56 78.28 84.32
U-FCN 75.71 92.14 80.88 86.09
U-FCN PT 74.72 89.43 82.20 85.44
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Conclusion

Does pre-training on document images improve the
performances ?

YES

Intersection-over-Union :
3 +5 percentage points on Horae and READ-Complex;
3 +4 percentage points on READ-Simple;
≈ Similar performances on Balsac;
7 −1 percentage point on DIVA-HisDB.

Our results are overall better than dhSegment’s (except for the
precision metric).
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Ablation study
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Comparaison to baseline model:
I Dilations [1, 2, 4, 8, 16 ];
I 731 training images for Balsac;
I Input images size: 384x384 px.
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Ablation study II

I Adding Batch Normalization and Dropout layers after all
convolutions improves the performances;

I Using dilation rates [1, 2, 4, 8, 16 ] allows to have a bigger
receptive field;

I Adding more training images and using bigger input images also
improves the results.

BUT still better results (77.42 %) than SOTA dhSegment (73.78 %)
with only 90 images.
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Conclusion

We designed a model:
I Lighter than dhSegment;
I Giving most of the time better results;
I Having a reduced prediction time: up to 8 times faster.

Future work:
I Test our architecture on datasets with more than 2 classes;
I Build an historical model trained on various historical documents.
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Thresholding

Post-processing after dhSegment:
I Probabilities thresholding to keep the highest;
I Removal of the small connected components.

To be comparable, we used the same post-processing after our model.

Does this thresholding have a real impact on our results ? If
so, how to optimize this threshold ?
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Thresholding impact II

I Choice of the threshold essential for dhSegment;
I Thresholding step obsolete for U-FCN:

→ no need to choose a threshold;
→ assign the class having the highest probability.
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