IntuiGeo: Interactive tutor for online geometry problems resolution on pen-bases tablets E-Fran Actif project

Omar Krichen, Eric Anquetil, Nathalie Girard, Simon Corbillé

June 7th 2019

Introduction

The 2D recognition engine Construction problem modelling Automated Resolution and interactive supervision Experiments and results Conclusion

Global vision of IntuiGeo: e-learning system for geometry learning

- Online recognition of user's strokes.
- Supervision of resolution strategy in construction problem.
- Visual and corrective feed-back generation.

Introduction

The 2D recognition engine Construction problem modelling Automated Resolution and interactive supervision Experiments and results Conclusion

Global vision of IntuiGeo: e-learning system for geometry learning

- Online recognition of user's strokes.
- Supervision of resolution strategy in construction problem.
- Visual and corrective feed-back generation.

CD-CMG formalism [S. Macé, E. Anquetil, 2009]

Introduction

- 2 The 2D recognition engine
 - CD-CMG formalism [S. Macé, E. Anquetil, 2009]

3 Construction problem modelling

- Problematic and design principles
- The problem generation module
- The problem model: the knowledge graph
- 4 Automated Resolution and interactive supervision
 - The learner module
 - The resolution module

Omar Krichen, Eric Anquetil, Nathalie Girard, Simon Corbillé

IntuiGeo: Interactive tutor for geometry problems resolution

Problematic and design principles The problem generation module The problem model: the knowledge graph

Introduction

The 2D recognition engine
CD-CMG formalism [S. Macé, E. Anquetil, 2009]

3 Construction problem modelling

- Problematic and design principles
- The problem generation module
- The problem model: the knowledge graph

4 Automated Resolution and interactive supervision

- The learner module
- The resolution module

Problematic and design principles The problem generation module The problem model: the knowledge graph

Challenges

- Automated generation: from the teacher's recognized strokes
- **Supervision**: *of the child resolution* to provide feed-back

IntuiGeo supervision engine components

- **Problem generation module**: synthesis of geometry problem from teacher example;
- Resolution module: synthesis of resolution strategies;
- Learner module: analysis of pupil resolution advancement and feed-back generation.

Problematic and design principles The problem generation module The problem model: the knowledge graph

Exercise generation from teacher's drawing

Omar Krichen, Eric Anquetil, Nathalie Girard, Simon Corbillé

Problematic and design principles The problem generation module The problem model: the knowledge graph

Knowledge graph definition

- Set of nodes and edges such as
- a node n is defined by
 - T: the recognized element from the 2D engine
 - RefC: reflexive constraints on T
 - DefC: Constraints depending on the mathematical definition of T;
- Each edge is denoted by a triple e = (Nf, Ns, Rel) with
 - Nf: the node corresponding to the tail node;
 - Ns: the node corresponding to the head node;
 - Rel: the set of relative constraints linking Ns and Nf.

Problematic and design principles The problem generation module The problem model: the knowledge graph

Construction of knowledge graph: dependency relations

Omar Krichen, Eric Anquetil, Nathalie Girard, Simon Corbillé IntuiGeo: Interactive tutor for geometry problems resolution

Problematic and design principles The problem generation module The problem model: the knowledge graph

Construction of knowledge graph: constraints propagation

Omar Krichen, Eric Anquetil, Nathalie Girard, Simon Corbillé

IntuiGeo: Interactive tutor for geometry problems resolution

Problematic and design principles The problem generation module The problem model: the knowledge graph

Construction of knowledge graph: structural relations

Omar Krichen, Eric Anquetil, Nathalie Girard, Simon Corbillé

IntuiGeo: Interactive tutor for geometry problems resolution

Problematic and design principles The problem generation module The problem model: the knowledge graph

Pedagogical elements inclusion and instruction generation

- Pedagogical limitations are extracted from the drawing procedure
- The instruction: the necessary and sufficient knowledge to solve the problem

(a) First type of exercise

• Draw the isosceles triangle ABC of base AB, given AB=3.5cm and AC=4cm

(b) Second type

• Draw the isosceles triangle BAE of base AB, given AB=5cm and EAB=40

The learner module The resolution module

Introduction

The 2D recognition engine
CD-CMG formalism [S. Macé, E. Anquetil, 2009]

3 Construction problem modelling

- Problematic and design principles
- The problem generation module
- The problem model: the knowledge graph

4 Automated Resolution and interactive supervision

- The learner module
- The resolution module

The learner module The resolution module

Graph matching

- Each recognized element is matched with the most likely node in KG
- Corrective feed-back is a description of unsatisfied constraints.
- Need for adaptive guidance feed-back

Omar Krichen, Eric Anquetil, Nathalie Girard, Simon Corbillé

The learner module The resolution module

Motivation and principles

- Objective: supervise the child strategy and provide adaptive feed-back
- We reformulate the resolution into a planning problem where:
- the goal: all nodes in KG are in the state completed
- the plan: sequence of drawing actions

The learner module The resolution module

Example: MakePerpendicular (AB, AD)

- Preconditions: Adjacent (AB, AD);
- Stroke: OrthoGesture(AB,AD).
- Postconditions: Perpendicular(AB,AD)

 \implies Solving the problem consists in solving the KG nodes by applying a sequence of these actions

Introduction The 2D recognition engine Construction problem modelling Automated Resolution and interactive supervision

The learner module The resolution module

Experiments and results

Conclusion

Resolution process example 1/3

The learner module The resolution module

Conclusion

Resolution process example 2/3

The learner module The resolution module

Resolution process example 3/3

Conclusion

Introduction

The 2D recognition engine
CD-CMG formalism [S. Macé, E. Anquetil, 2009]

3 Construction problem modelling

- Problematic and design principles
- The problem generation module
- The problem model: the knowledge graph
- 4 Automated Resolution and interactive supervision
 - The learner module
 - The resolution module

- Experiments realised in classrooms by Loustic colleagues
- We extracted 20 user data related to this exercise
- Goal: test the engine ability to correctly match the recognized stroke with the graph and to supervise pupil strategy

Proposed exercise

- C.M: the capacity of the engine of correctly matching the child's production with the knowledge graph;
- NB-solved: the number of solved nodes by the users;
- Correction: number of actions to solve the exercise given the child's plan.

Table 1	Ŀ	Results	on	users	data
---------	---	---------	----	-------	------

Block	C.M	NB-solved	Correction
Block 1	100% (2/2)	n = 12	None
Block 2	83.3% (5/6)	5 =< n =<8	4 actions (avg)
Block 3	100% (12/12)	n =<2	9 actions (avg)

Introduction

The 2D recognition engine
CD-CMG formalism [S. Macé, E. Anquetil, 2009]

3 Construction problem modelling

- Problematic and design principles
- The problem generation module
- The problem model: the knowledge graph
- 4 Automated Resolution and interactive supervision
 - The learner module
 - The resolution module

Synthesis

- Design supervision engine
- Tutor based on pattern recognition techniques
- Problem generation, automated resolution, supervision and feed-back

Future work

- Consolidate the tutor, include teacher constraints in instruction
- Analysis of the impact of of the engine on pupil performances

Thanks for your attention

