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Handwriting recognition system

Constraints
Images (input) of variable size
Sequence of characters (output) of variable length

Towards a heavy use of neural networks
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Deep learning handwriting recognition system

Architecture
Recurrent layers (LSTM) and/or non-recurrent ones (CNN)
Language model inclusion

Sequence alignment

Connectionist Temporal Classification (CTC)

Focus on optical model only without language model nor
lexicon constraints
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State of the art

Recurrent models - Multi-Dimensional Long-Short Term Memory
(MDLSTM) [Pham2014].

Recurrence over horizontal and vertical axis (in both
directions) : 4 LSTM/layer
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State of the art

Recurrent models - Convolutional Neural Network + Bidirectional
Long-Short Term Memory (CNN+BLSTM) [Puigcerver2017].

Recurrence over horizontal axis only (in both directions) : 2
LSTM/layer
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State of the art

Non-recurrent models - Convolutionnal Neural Network (CNN)
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State of the art

CNN for handwriting recognition

Fully Convolutional Networks (FCN) + CTC [Ptucha2018]
Standard CNN without dense layer

FCN with gating mechanism + CTC [Yousef2018]
Gates (tanh, sigmoid)
Residual connections
Depthwise Separable Convolutions
High normalization (batch & layer)

FCN with gating mechanism + CTC[Ingle2019]
Gates (ReLU, sigmoid)
Shared weight layers
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Context

Objective
Design a convolutional network competitive with recurrent ones to
reduce the training time : G-CNN

Main questions
Are recurrent layers really necessary for handwriting
recognition ?
Are CNN really lighter than recurrent model in terms of
parameters ?
Is it possible to easily obtain competitive results without
recurrence ?
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Our baseline model - CNN+BLSTM

Flatten

Dense (256)

BLSTM (256)

Dense (n+1)

Softmax

Input (X, 32, 32, 1)

BLSTM (256)

Conv2D(u)

Conv2D(u)

MaxPooling(2, 2)

Dropout(d)

 (X, 2, 2, 256)

x4
u = [32 64 128 256] 
d = [0.4 0.4 0.4 0]  

Features
From [Soullard2019]
(state-of-the-art results)
Recurrent model
8 convolutions
2.5 million of parameters

n : number of characters in the
alphabet
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Our G-CNN - overview

Input (X, 32, 32, 1)

Conv2D(u)

Conv2D(u)

MaxPooling(2, 2)

Dropout(0.4)

Gate

GateBlock #2

Concatenate

Conv2D(512, k=(1,1))

Flatten

Dense (512)

Dense (n+1)

Softmax

 (X, 2, 2, 512)

x2
u = [32 64] 

Conv2D(u)

Conv2D(u)

x4
u = [128 256 256 512]

Dropout(0.4)

...

...
GateBlock #1

 (X, 2, 2, 1536)

Features
Based on baseline
model

Non-recurrent
model

21 convolutions

6.9 million of
parameters

Shared weight
layers

Depthwise
Separable
Convolutions

Residual
connections
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Our G-CNN - gates

Gating mechanism
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Training details

Hyperparameters
Sliding window : 32x32 px
Loss : CTC
Optimizer : Adam
Initial learning rate : 10−4

Momentum : 0.9

Importance of recurrent layers for unconstrained handwriting recognition 13 / 26



Context Studied architectures Experiments Conclusion References

Model evaluation

Criteria
Character Error Rate (CER)
Number of parameters
Training time

Raw model comparison
We focus only on the network performance alone
No language model
No lexicon constraints

Dataset
RIMES (lines)
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RIMES dataset

Dataset characteristics
+1,300 writers
French writings
12,723 pages segmented into lines

RIMES dataset split

Training Validation Test Alphabet
9,947 1,333 778 100

Example
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First experiment : Raw comparison

Architecture
CER(%) CER (%) Training

Parameters (M)
validation test time

CNN+BLSTM 6.98 6.88 1d22h59 4.1
CNN+Dense only 17.73 19.03 1h10 1.5

G-CNN 9.92 10.03 10h00 6.9

BLSTM layers responsible for a large amount of parameters (2.6 M)

BLSTM layers increase performance dramatically (-12.15% in test)

G-CNN : more parameters but training time shorter (parallel
computing)
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Second experiment - Robustness against complexified data

Modified version of RIMES dataset
Lined paper background addition

Examples
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Second experiment - Robustness against complexified data

Architecture Background
CER(%) CER (%) Training
validation test time

CNN+BLSTM
Without 6.98 6.88 1d22h59
With 8.81 9.27 1d1h29

G-CNN
Without 9.92 10.03 10h00
With 11.70 12.55 8h27

Similar behavior - CER increased by 2.39% for the CNN+BLSTM
and 2.52% for the G-CNN (in test)
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Third experiment - Impact of data augmentation

RIMES

1. Raw

2. Contrast

3. Sign flipping

4. Long scaling

5. Short scaling

6. Width dilation

7. Height dilation
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Third experiment - Impact of data augmentation

Architecture Data augmentation CER(%) - validation CER (%) - test

CNN+BLSTM
Without 6.98 6.88
With 6.59 5.94

G-CNN
Without 9.92 10.03
With 8.93 8.73

CER decreased by 1.30% for the G-CNN and 0.94% for the
CNN+BLSTM

Assumption : G-CNN needs more examples whereas CNN+BLSTM
compensates with its use of context
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Ablation study - Part 1

Architecture
CER(%) CER (%) Training

Parameters (M)
validation test time

G-CNN 9.92 10.03 10h00 6.9
(1) Only standard convolutions 10.02 9.97 6h41 9.0

(2) Max pooling from the very beginning 13.31 13.35 2h57 6.9
(3) No shared weight layers 9.78 9.85 8h54 7.7

(1) Depthwise Separable Convolutions enables saving 2.1 M of
parameters preserving the performance (+0.06%)

(2) Delaying the use of max pooling increases the performance (by
3.32%)

(3) Shared weight layers enable saving 0.8 M parameters, with a
similar CER (+0.18% only)
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Ablation study - Part 2

Architecture
CER(%) CER (%) Training

Parameters (M)
validation test time

G-CNN 9.92 10.03 10h00 6.9
(4) Doubled convolutions in GateBlocks 9.96 10.15 4h10 7.4

(5) Removal of the 2 GateBlocks 10.09 10.33 6h37 6.1

(4) Increasing the number of convolutions between gates is not
necessary (+0.12%)

(5) The majority of the work is done before the GateBlocks
(+0.3%)
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Conclusion - recurrent models

Structure
Convolutional part (CNN): feature extraction
Recurrent part (LSTM): sequence modeling

Advantages
Performance
Simple architectures

Drawbacks
Recurrent models have long training times:

LSTM implies a large amount of parameters
Recurrence implies sequential computations
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Conclusion - G-CNN models

Structure
Feature extraction similar to CNN+BLSTM
Gating mechanism to filter information

Advantages
Convolution = parallelizable operation & few parameters

Reduced training time
Deeper networks, bigger receptive fields

Drawbacks
Number of hyperparameters, hard tuning
Complex architecture
Performance hardly competitive
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Future works

Toward an even lighter network
Give up densely connected layers to build a Fully Convolutionnal
Network

Exploring other alternatives

Attention models [Chowdhury2018]
Dense net [Huang2016]
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