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What is Multimodal?
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Sample of Modalities

Natural language
Visual

Auditory

Haptics / touch
Smell, taste and
self-motion
Physiological signals
Other modalities



Challenges in Multimodal ML

> Representation
o Joint representations (Multimodal space)
o Coordinated representations (Correlated projections)

> Alignment: Correspondances between elements in the different modalities (media
description)

> Fusion: Early or late Fusion?
> Translation: Event recognition

>  Co-Learning: Transfer learning



Samples of Real-World Tasks Tackled by
Multimodal Research

Affect recognition Event recognition
> Emotion > Action recognition
Multimodal information retrieval Media description

>  Content based/Cross-media > Visual Question Answering



State of the art

MML in Cross-modal Retrieval

General classification for methods addressing the task of cross-modal retrieval

> Models that find correlated subspaces: CCA based models
>  Methods based on tensor factorizations and graph embeddings: Manifold learning

> Deep learning methods
Drawbacks of the state of the art methods

> Double training phases for each separate model

> Mainly, focused on the visual modality --> Textual modality modeled with methods such as BoW,
topics, etc.

> QOver trained to perform in single tasks



Research questions

Obijective: Design and evaluate new computer systems that take advantage of different
modalities through strategies in representation learning.

Research questions:

> How to leverage all the available information in databases?
> How to combine different modalities in an end-to-end system?
> How to evaluate the quality of the features obtained?



Methodology

>  Design/adapt and study models that can process different modalities

o By studying and analysing strategies, mainly in representation, alignment and fusion

challenges
>  Evaluate those models in the context of two selected tasks:
o  Multimodal information retrieval (Application 1)

o Mediadescription (Application 2)



Visual Network
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Deeper networks
Skip-connections
Faster training

Successfully applied in visual tasks [2]
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Textual network

RNN

> RNNSs have memory

> RNNs handle larger
dependencies

> Theyallowusto
operate over
sequences of vectors

> Successfully applied

in many applications
involving sequences
of data
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The repeating module in an LSTM contains four interacting layers.

LSTM module [7]



Proposed model

By combining the previous strategies in an end-to-end system:
> Visual Network: ResNET (freezed) + 1 FC (Fully connected)
>  Textual Network: GloVe initialization+2 LSTM + 1 FC

> Multimodal Network: Fusion layer + 2 FC + 1 Classifier layer
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Proposed model

Advantages:

> First time to combine a ResNET + a sequential model in the context of multimodal retrieval
(1st Application)

> Allow us to evaluate the embeddings from multiple modalities and at different points
(different layers)

> Allow us to evaluate different retrieval tasks using the same model under the same
computational framework

> Flexibility to adapt the system to address different tasks.
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Wikipedia retrieval database

> Modalities: Images and text
>  Text Length ~ 100 tokens
> 2,173 Train samples

> 693 Test samples

> 10 semantic categories

History Music Literature & theatre

. 'abuse', 'accompanied' 'abundance' 'ancient'
'arrived', 'ascended', o 0, SEEIPAISE 5 \ Iy £
'atlantic' ) idi i achieve , ‘acoustic', appears’',

'b:se?n %ga" a\'/géligse" 'adding’, ‘'album’, 'archaeological’,
Moo D Yé'r alice’, 'artwork’, 'archaeologist', 'box',

belongeld . Ibeyond d 'bad’, 'baker' 'burial', 'business'
cam ! '

P 'chamber', 'chance'

Triplet of samples: Category, Image, Tokens
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Proposed model
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MAP Comparison from features computed from different

layers
Task Layer
Densel(V) / Dense2(T) | Dense3 | Dense4 | DenseS
Txt2Txt 0.5615 0.5662 0.5672 0.5671
Img2Img 0.2555 0.2707 0.2733 0.2831
Img2Txt 0.3792 0.3681 0.3755 0.4221
Txt2Img 0.3821 0.3863 0.3773 0.3600
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Multimodal retrieval results

........ CMSTH[8] Img2img R A /7 i s
____________ OURS Img2Txt 0451 0435 0426 0422
MDCR [9] - - - 0.435
............ OURS 0489 0490 0382 0360

CMSTH [8] Txt2lmg - - 0.387 .
- TextTopicNet [10] - - - 0.402
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Visualization of embeddings

Visual Textual Multimodal
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Results
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The evaluation of embeddings from different layers demonstrates the advantages and gainin
performance of using different modalities to train the system

Competitive performance over all the state-of-the-art methods

Although the dataset is very complex, the model achieves a global state-of-the-art performance
The t-sne explains those categories that imposes a challenge to the model

Further research and improvements in the visual network are required

The results provide us with information about the strengths and weaknesses of our proposal, thus,
we can work on them.

18



Cross-modal retrieval sample

ability actual admiral aft aircraft airfield arrived assigned
Query Text assisted attacking base battleship bay beach begun bomb bombardment
buried canal caroline carrier coast continuous

Top@6
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Application 2 (ongoing work)

Scene Text
Recognition via s Multimodal
Visual Question W, - System
Answerin What is the big white
swe g word on the red ST
octagon? =

Total
n-grams
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ExElorations in Textual network

Embedding matrix
>  Context-free
o GloVe vectors [3]
>  Context-based
o BERT][6]
Sentence: “He went to the prison cell with his cell phone to extract blood cell samples from inmates”

Embeddings for the word ‘cell”:

> Glove --> Only 1 embedding
> BERT --> 3 Different embeddings
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Proposed model
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Evaluation protocol

TEST SET
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ICDAR Challenge:

Robust Reading Challenge on Scene Text Visual Question

Answering

GloVe 023093 0.12058

~ Bert_per_sentence = 0.21622  0.11430
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Conclusions and future work

> Many tasks in multimodal learning represent a challenge because the nature of the data
involved, which motivates an increasing and active interest in the research community.

> We propose an end-to-end methodology that is flexible and that can be applied to address
and study different tasks in the context of multimodal learning.

> Our ongoing work, as well as the few state of the art works, in the novel application of Scene
Text Recognition via VQA requires much more research, due to the ambitious requirements
it imposes.

> Our future research aims to strengthen the methodologies proposed by improving each
component, as well as the involvement of more modalities that can contribute in finding
better multimodal spaces.
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